Day 5

Algebra 1	Foundations Intermediate Algebra 2
Standards	A1.AREI.6a Solve systems of linear equations using the substitution method. A1.AREI.6b Solve systems of linear equations using linear combination.
Learning Targets/I Can Statements	I can use substitution to solve a system of linear equations. I can use elimination to solve a system of linear equations.
Essential Question(s)	How can I solve system of equations by the substitution method? How can I solve system of equations by the combination method?
Resources	https://www.khanacademy.org/math/algebra-basics/alg-basics-systems-of-equations http://crctlessons.com/systems-of-equations-game.html https://www.desmos.com/calculator https://www.mathplanet.com/education/algebra-1/systems-of-linear-equations-and-inequalities/the-elimination-method-for-solving-linear-systems
Learning Activities or Experiences	$1^{\text {st: }}$ Recall questions (attached) 2nd: Watch the Khan Academy video (link above) system of linear equation substitution and elimination method Alternative: Notes on systems on linear equations (elimination and substitution method) $3^{\text {rd }}$: System of linear equations game $4^{\text {th }}$: Assignment

Recall Questions

1. How many solutions are there for the following equation $5 x+8=2 x-3$?
2. How many solutions are there for the following equation $7(x+3)=7 x+3$?
3. How many solutions are there for the following equation $\frac{4 X-6}{2}=5 X-3$?
4. What is the solution: $-3(x+4)=4(x-10)$
5. What is the solution: $\frac{x-3}{4}=\frac{x+1}{3}$

Systems of Linear Equations

System of Linear Equations: is a collection of two or more equations.

Solving by combination method

To solve a system of equations using substitution...
$2 x+y=3$ and $x+2 y=12$

1. Isolate one of the variables in one of the equations, e.g. rewrite $2 x+y=3$ as $y=3-2 x$.
2. You can now express the isolated variable using the other one. *Substitute* that expression into the second equation, e.g. rewrite $x+2 y=5$ as $x+2(3-2 x)=12$.
3. Now you have an equation with one variable! Solve it, and use what you got to find the other variable.
$x+6-4 x=5$

$$
\begin{array}{r}
-3 x+6=12 \\
-6 \quad-6 \\
-3 x=6 \\
x=-2
\end{array}
$$

4. Substitute the x value back into the equation $y=3-2 x$

$$
\begin{aligned}
& y=3-2(-2) \\
& y=3+4 \\
& y=7
\end{aligned}
$$

$$
\text { solution = }(-2,7)
$$

Your turn:
$-3 x+y=7$ and $y=4 x$

Solving by elimination method
$3 y+2 x=6$
$5 y-2 x=10$
We can eliminate the x-variable by addition of the two equations.
$3 y+2 x=6$
$+5 y-2 x=10$
$8 y=16$
$y=2$

The value of y can now be substituted into either of the original equations to find the value of x
$3 y+2 x=6$
$3(2)+2 x=6$
$6+2 x=6$
$\mathrm{x}=0$
The solution of the linear system is $(0,2)$.

Your Turn:
$4 x-2 y=12$
$-4 x+6 y=4$

